
A critical review of computational
neurological models

Samantha Zarate – slzarate@stanford.edu – 5787179

June 11, 2014

Abstract

Modeling neural networks computationally has become a field full of
possiblities, especially with the influx of data biologists are currently ob-
taining through improved experimental methods. The objective of this
paper is to provide a critical review of computational models simulating
the neural networks of the brain from biomedical and computational liter-
ature. In this paper, I review three types of approaches for understanding
the inner workings of the human brain. The first approach presented
is software-based – specifically, the software package NEURON; and the
second is hardware-based – specifically, graphics processing units (GPUs)
and the novel creation Neurogrid. Though other techniques exist, these
two general types of approaches encompass the diversity of models used
to simulate neural networks; specific examples within each approach are
either revolutionary or extremely widely used, and so are significant in
different ways. Each approach is presented with both its benefits and
costs as well as possible improvements, and the paper concludes with an
overview of the types of methods and future applications of these compu-
tational approaches.

1 Introduction

Mathematical theories of perception were among the first attempts at taking
a computational approach to understand neuroscience, and those working
in biomedical computation have long since attempted to simulate the brain’s
functions with computers and computational theory (Gerstner et al, 2012). Ex-
perimental advances in the field now mean that biologists have an enormous
amount of data at their disposal. (Hines and Carnevale, 1997) This influx of
data combined with the increasing application of computer science in non-
computer fields has begun a veritable revolution in molecular biology and

1



neuroscience: researchers are now using computer simulation and computa-
tional theory to attempt to understand, for example, how the brain operates
on a systemic level.

Understanding the networks underlying the human brain’s functionality has
a multitude of implications, including the ability to model computers after hu-
man brains, increasing processing power and energy efficiency (Benjamin et

al, 2014). In recent years, advances in machine learning and computing power
have allowed researchers to develop several different ways of approaching
modeling the human brain, focusing on different aspects of the brain’s func-
tionality.

In this paper, I will briefly review three different computational approaches to
modeling the human brain. This review will begin with software simulations,
with an emphasis on NEURON; it will then examine hardware approaches, in-
cluding graphics processing units (GPUs) and Neurogrid. Focus will be given
to the computational aspects of these approaches – specifically, the algorithms,
equations, and concepts behind the models.

2 Software Approach: NEURON

A widely used approach to modeling the human brain uses software pack-
ages that aid researchers in crafting and simulating neuronal network mod-
els. These include NEURON, which will be covered in-depth here, as well as
GENESIS, NEST, and Topographica.

NEURON, along with GENESIS, has a large user base and is currently un-
der active development. (Crook et al, 2012) Initially designed to be a flexible
framework specifically for dealing with the equations describing nerve cells
in which complex membrane properties and currents (Hines and Carnevale,
1997), it supports modeling conductance-based neuronal models with a great
amount of biological detail (Crook et al, 2012).

Intuitively, NEURON interprets a neuron to be a continuous cable divided
into segments. (Hines and Carnevale, 2001) The cable equation, or the ba-
sic description between current and voltage in a one-dimensional cable, is as
follows:

∂V

∂t

+ I(V, t) =
∂2

V

∂t

2 (1)

This equation, combined with boundary conditions expressed in the form of
discrete segments – that can later be connected to better reflect the physical
shape of the neuron itself, including branching – is the framework behind

2



the NEURON model, which is, unsurprisingly, most computationally effi-
cient with problems involving small numbers of neurons or a single neuron
in which cable properties are crucial (Hines and Carnevale, 1997).

Furthermore, users may define their own membrane and cytoplasm proper-
ties (Hines and Carnevale, 2001); specifically, NEURON supports the model
description language NeuroML, which is simulator-independent in order to
allow communication and documentation of neural network models, as well
as PyNN, which is an application programming interface (API) for the Python
programming language (Crook et al, 2012).

NEURON is known for its flexibility and convenience; specifically, it has a
graphical interface (GUI) that can be used to perform tasks such as model
creation and variable graphing as well as an object-orientated interpreter pro-
viding a programming language that biologists can easily handle. (Hines and
Carnevale, 2001) For example, the following code fragment describes a simple
neuron with three dendrites connected to one soma connected to an axon:

begintemplate Cell1

public soma, dendrite, axon

create soma, dendrite[3], axon

proc init() {

for i=0,2 connect dendrite[i](0), soma(0)

connect axon(0), soma(1)

axon insert hh

}

endtemplate Cell1

Clearly, NEURON was designed specifically for neurons and follows their
properties – with a biology-oriented programming language, it becomes easy
for neuroscientists to simulate neural networks without learning a massive
multipurpose programming language such as Python or C++. (Hines and
Carnevale, 1997) Its programming language is extremely intuitive and easy
to understand for neuroscientists due to its low language entropy – all named
keywords are intuitive (e.g. dendrites represent dendrites, etc.), everything is
lowercase, similar functions are named similarly, and it completely revolves
around neuroscience itself. (Brette, 2012) Due to this specificity, NEURON can
also handle large amounts of biological data, which is crucial for modern-day
biologists having to deal with unprecedented levels of data.

Unfortunately, like almost all software approaches to problems in neuroscience,
NEURON faces the twin challenges of communication and documentation.
Formal documentation is critical for reproducible results, yet non-determinism
(wherein there is an element of randomness or choice, and thus running the

3



same algorithm twice may not produce the same response) can impede for-
mal descriptions of models. Additionally, neural network models are nec-
essarily scaled down for clarity and human understanding; however, neural
networks themselves are extremely complex, so the downscaling must be well-
documented, as there are different approaches to downscaling these neural
networks. (Crook et al, 2012)

While non-determinism cannot be avoided, NEURON has mitigated this ran-
domness issue by employing random seeds, which calculators typically use to
determine random numbers. Random seeds are numbers used to initialize a
pseudorandom number generator; the output of the psuedorandom number
generator is deterministic and so, by choosing the seed, can be controlled.
Currently, there is no explicit support for downscaling in NEURON, so each
user must find their own way to accomplish this. As a result, models can
be inconsistent; and in a field where even the smallest inconsistency or dis-
crepancy can lead to dramatically different results, this is a major issue in
communication. (Crook et al, 2012)

3 Hardware Approach

Another technique of modeling neural networks, which primarily emphasizes
rapidity of processing and scale of processes, is a hardware approach, in
which physical chips or circuits simulate neural processing (Benjamin et al,
2014; Brette and Goodman, 2012; Schemmel et al, 2008). This review will fo-
cus on the use of graphics processing units (GPUs) and Neurogrid, as they
represent both a pre-existing system retooled for neural network modeling
and an entirely novel hardware approach bundled with a unique software
component, respectively.

3.1 Graphics Processing Units (GPUs)

Graphics processing units (GPUs) are chips of graphics cards; originally de-
signed specifically for computer gaming, they are now being repurposed for
parallel computing. GPUs are ideal for parallel computing due to their mul-
tiple processor cores, and ultimately researchers wish to be able to simu-
late neural networks in parallel, thus improving efficiency and reducing the
amount of physical hardware needed for large-scale neural modeling. Fur-
thermore, algorithms used by GPUs must be specifically designed for GPUs;
individual processor cores are considerably simpler than a typical computer’s
central processing unit (CPU), and so algorithms failing to account for the
GPU architecture will fail to take advantage of the potential efficiency. (Brette
and Goodman, 2012) GPUs are multipurpose even within neuronal modeling,

4



and specialized simulator environments such as NeMo and GeNN have been
designed to rise to the challenge. (Crook et al, 2012)

However, specifically, I will focus on the use of GPU implementations for
spiking neuron models, wherein discrete events (spikes) are modeled, rather
than gap junctions, as to the best of the author’s knowledge, this usage is
extremely well-documented. The spiking neuron model can be broken down
into three primary steps:

a. Integrating the differential equations used to describe neuronal models,
which scales with the number of neurons and easily parallelized.

b. Propagating spikes to target neurons, which scales with the number of
synapses.

c. Applying the effects of spikes on target neurons, which also scales with
the number of synapses.

Because of how steps 2 and 3 scale, they are the bottlenecks in terms of com-
putational time and cost; in particular, step 2 is more difficult as it does not
follow the Single Instruction, Multiple Data paradigm and so is the primary
bottleneck. There are two ways to approach this more difficult step of spike
propagation: one can either parallelize over neurons, wherein threads update
the total input of one neuron by checking whether any presynaptic neurons
have spiked (this can be made even more efficient to reduce the number of
unnecessary operations); or one can parallelize over synapses, which partic-
ularly reduces the number of unnecessary operations with sparse firing, and
can even be more efficient than parallelizing over neurons. (Brette and Good-
man, 2012)

Overall, large-scale GPU simulations are impeded by memory, which limits
overall efficiency (Crook et al, 2012) – at each timestep the GPU’s kernels need
to access a great deal of memory because every synaptic variable correspond-
ing to spikes must be accessed; furthermore, the limiting speed is very low
due to the fact that synaptic operations are typically addition. Furthermore,
due to the high specificity of GPU code, coding for GPUS is a task typically
automated using code generation, or the automatic generation of code from a
detailed model description, which also allows non-computer scientists to se-
lect the most efficient algorithm for their particular hardware device. (Brette
and Goodman, 2012)

3.2 Neurogrid

Neurogrid is an extremely novel (developed a little over a month ago) neu-
romorphic system for simulating large-scale neuronal models in real time –

5



a physical array of circuit boards designed to emulate both the structure and
function of a neuronal system combined with software to perform interactive
functions such as visualization, though this review will focus on the hardware
aspect of the project.

In particular, Neurogrid uses a series of circuits to simulate neurons – 16 Neu-
rocores, all on a single circuit board and powered by 3 watts, each to simulate
a neuron with a soma, a dendrite, and four shared synapse and dendrite cir-
cuits. The behavior of these Neurocores are determined by specialized equa-
tions, as shown below, wherein v denotes voltage, g denotes conductance, and
i denotes current.

Somas are represented by the following equation:

t
s

v̇

s

= �v

s

+ i

sin

+
v

2
s

2
� g

K

v

s

� g

res

v

s

p

res

(t) + v

d

(2)

Wherein:

• t
s

is the membrane time constant

• i

sin

is the input current

• v

2
s

s

is the spike-generating sodium current

• g

res

is the reset conductance for the duration t

res

of a high-amplitude
pulse t

res

, modeling the refractory period

• g

K

denotes high-frequency potassium conductance, modeling spike-frequency
adaptation

Dendrites are represented by the following equation:

t
d

v̇

d

= �v

d

+ i

din

+ i

bp

p

res

(t) + g

ch

(e
ch

� v

d

) (3)

Wherein:

• t
d

is the membrane time constant

• i

din

is the input current

• i

bp

is the backpropagating input

• g

ch

is the channel population’s conductance

• e

ch

is the reverse potential

6



Figure 1: Example of a circuit modeling a soma used in the Neurogrid. (Ben-
jamin et al, 2014)

These equations, including those for synapse population and ion-channel pop-
ulation, are all integrated in order to build separate circuit models for each
aspect of the neuron, as shown in figure 1.

Additionally, Neurogrid enables shared electronic circuits – for synapse, den-
drites, axons, and more – wherein a common set of wires, resistive network,
circuit board, etc. is shared between an entire neuronal population, which al-
lows it to operate much more efficiently than other models. During a million-
neuron, eight-billion-synapse real-time simulation, Neurogrid consumed 2.7
watts. Neurogrid also had an overall lower cost than similar methods of sim-
ulation by using multilevel axon branching to reduce its fixed area and static
energy cost.

Overall, Neurogrid appears to be extremely promising – it can be fully utilized
by neural models such as cortical feature maps and cortical columns and is
more efficient than its peers. However, there are limitations to Neurogrid:
it was very recently published, meaning not many researchers have had a
chance to attempt using it; it makes synaptic plasticity all but impossible due
to its neurons having fixed neighbors; it has an outdated process; and it is
orders of magnitude worse than the human brain in terms of energy efficiency.
(Benjamin et al, 2014)

7



4 Conclusion

Each approach has its own unique benefits and challenges:

• Software such as NEURON is operable on different simulators and is
easy-to-use for biologists unfamiliar with programming, but it is diffi-
cult to reproduce and results are difficult to communicate due to non-
standard methods.

– This can be improved by standardizing methods such as downscal-
ing and generally making code and algorithms easier to communi-
cate between platforms. Standardization without loss of specificity
is the key here.

• Hardware repurposed for neural modeling such as graphics processing
units (GPUs) are extremely powerful and allow for parallel processing,
but it is limited by its own memory.

– This can be improved by using more specialized chips and utilizing
GPUs more efficiently in order to reduce the memory required.

• Hardware built specifically for neuronal modeling such as Neurogrid
are also very powerful, specialized, and energy-efficient, but its specialty
is limiting in terms of plasticity and it is still considerably less efficient
than the human brain itself.

– This can be improved by both focusing scrutiny on novel meth-
ods such as Neurogrid in order to specifically see what should be
done to make it more efficient and rethinking the setup to allow for
synaptic plasticity – for example, machine learning and short-term
memory may be very valuable in permitting Neurogrid to model
synaptic plasticity and thus become more efficient.

Modeling of neural networks is an extremely promising, fairly new field, one
that has the ability to make computers more powerful than ever before. Ad-
ditionally, machine learning is a very powerful tool that, when thoroughly in-
tegrated into the large-scale modeling of networks, can dramatically improve
model accuracy. Though there are different avenues via which researchers
approach modeling, each have their own benefits and drawbacks; as a result,
both hardware and software modeling approaches will likely continue to be
pursued, possibly yielding independent yet equally exciting results for the
fields of medicine, neuroscience, computing, and more.

8


